PHYSICAL REVIEW E

VOLUME 51, NUMBER 1

JANUARY 1995

Suppression of chaos by selective resonant parametric perturbations
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It is shown that, depending on its amplitude, frequency, and initial phase, a time-dependent periodic
parametric perturbation can suppress chaos in nonlinear oscillators. The example of the Duffing-Holmes
oscillator is used to demonstrate that all the numerically and experimentally observed phenomenology is
theoretically explained by using the Melnikov-Holmes method and suppression of chaos is seen to be
possible when certain resonant frequencies are involved.

PACS number(s): 05.45.+b, 05.40.+j

The problem of suppressing chaos has attracted great
interest in recent years [1-4]. In particular, it has been
observed both theoretically and experimentally [5-8]
that resonant parametric perturbations [in the examples
of the Josephson-junction model and the Duffing-Holmes
(DH) equation] can suppress chaotic behavior arising
from homoclinic bifurcations. In spite of this work, a
complete comprehension of such inhibitory mechanisms
is still far from being achieved. In fact, certain key ques-
tions remain. (i) What exactly is the nature of the reso-
nant condition imposed on the parametric perturbations
in order to regularize the dynamics? From numerical
and experimental results, regularization is only observed
for a limited range of resonances between the frequencies
of the parametric perturbation and the primary chaos-
inducing forcing. (ii) What is the influence of the initial
phase difference between such forces. Experimentally it
is found that [7]: “Indefinitely long regularization is
found at exact resonance, but this also requires an ap-
propriate phase relation between the forcing and the
parametric perturbation.” (iii) What is the nature of the
route(s) from chaos to order underlying the inhibitory
mechanism? (iv) What type of agreement might one ex-
pect between analytical and numerical results?

In this article I attempt to answer these questions using
the example of the DH oscillator with a parametric per-
turbation of the cubic term [5,7,8]

X —x+B[1+ncos(Qt+¢)]x3=—8% +ycos(wt) , (1)

where ), 7, and @ are the frequency, amplitude, and ini-
tial phase, respectively, of the parametric perturbation
(n <<1), which has a suppressory effect on the chaotic
dynamics of the unperturbed system. By using the
Melnikov-Holmes method (MHM) [9-13], analytical
predictions are obtained for the threshold for chaos. In
distinction to previous work [5,7,8], I obtain from these
predictions a selective resonance condition involving
o, Q, and @, and two threshold values (upper and lower)
for n for the elimination of the chaotic dynamics present
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at n=0. Numerical experiments are performed with Eq.
(1) and the results are compared separately with the
theoretically predicted values of €, 7 and ¢ that
suppress chaos. Additionally, it is shown that type-II in-
termittency appears as () approaches the resonance con-
dition.

As is well known, the MHM is only concerned with
transient chaos [11], i.e., only necessary conditions for
(steady) chaos are obtained from it, and therefore one al-
ways has the possibility of finding sufficient conditions for
the elimination of (even transient) chaos. Observe that
the validity of these statements is subject to two con-
straints since the MHM is a perturbative (to first order)
method: (a) its predictions are only valid for motions
based at points sufficiently near the separatrix of the un-
perturbed system; (b) the perturbative term’s amplitude
must be sufficiently small ( <<1).

Let us now consider the concrete application of these
ideas to system (1). From Cuadros and Chacén [8], the
Melnikov function (MF) for this case (¢ #0) is written

M(ty)=A(y,w)sin(wty)

—B(1,Q)sin(Qt,+@)—C(B,5) , (2)
with
172

Ay, 0)= |—= Ty w sech WTCO‘ ,

— TN 2 7 3
B(n,Q) GB(Q +4Q%)csch 5 ‘ , (3)

_4
C(B,8)= B

(The corresponding result for ¢ =0 from Lima and Pet-
tini [Eq. (1), Ref. [8]] is incorrect.) Suppose that for =0
we are in a chaotic situation for which the associated MF
My(ty)= A(y,0)sin(wty)—C(B,8) changes sign at some
tos i-€.y

Aly,0)—C(B,8)=d >0, @)

where the = equals sign corresponds to the case of
tangency between the stable and unstable manifolds.
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If we now let the parametric perturbation act on the
system  (n #0) such that B(7n,Q)<d, i.e,
A(y,0)—B(n,Q)—C(,8) 20, this equation represents a
sufficient condition for M(z,) to change sign at some ¢.
Thus, using Eq. (3), a necessary condition for M(¢,) to al-
ways have the same sign, i.e., M(¢,) <0, is written

_ C(B,5)
n> (1 _A(y,w) R(7,0,Q), (5)
with
~ sinh %
Riy,0,0)= 212610 ®)
(Q4+402) - )
cosh | —

For general Q) and @, we shall see that this condition is
not sufficient to ensure the negativity of M(¢,). In order
to obtain such a sufficient condition, we shall first need
three lemmas.

Lemma I. Let Q/w be irrational. Then there is some
Ty such A(y,w)sin(0?,)—B(7,Q)sin(Qf, +¢)> A(y,w)
—B(7,Q).

Lemma II. Let gQ=pw for some positive integers p

and gq. Then a 1§ exists such  that
sin(wt§ )=sin(Qz§ +¢@)=1 if and only if
p_4dm+1-2¢/7 )

q 4n +1

0 500 1000 1500 2000

(b)
(‘) 56(}

— e

1000 1500 2000

0 500 1000 1500 2000

for some integers m and n.

Remark. Observe that a  requirement is
e=I17/1,, 1,, integers, for Eq. (7) to be fulfilled for
some integers m and n. For the particular case (¢=0)
considered in Refs. [5,8], Lemma II implies that, for gen-
eral p and g, it is not always possible to find integers m,n
fulfilling Eq. (7). Thus the condition given in those refer-
ences is only a necessary (but not sufficient) condition for
eliminating chaotic dynamics.

Lemma  III. Let  f(t;p,q)=[1—cos(pt/q)]/(1
—cost),t real, p and q integers. Then f is finite if and
only if g =1. One also has that 0= f(¢;p,1)<p2.

The proofs of these lemmas are quite straightforward,
so they will be given elsewhere [14].

It is obvious that for Eq. (5) to be also a sufficient con-
dition for M(t,) to be negative for all ¢,, one must have

Ayw)—B(n,Q)Z A(y,)sin(wt,)
—B(7,Q)sin(Qty+¢) . (8)

Now we look for the values of w, Q, and @ permitting
Eq. (8) to be fulfilled for all z,. From Lemma I, a reso-
nance condition is required: pw=q¢Q. In such a situa-
tion, Lemma II provides a condition for Eq. (8) to be
satisfied for a infinity of t, values. Thus let us suppose
that p, ¢, and ¢ verify Eq. (7). One can then rewrite Eq.
(8) in the form

Aly,w) o 1—cos(pt/q)

B(n,Q) ~ [l1—cos(?)] ’

9)
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FIG. 1. Velocity time series. The parameters are =4, §=0.154, y =0.088, @=0, 7=, =0.0750925, 0=1.1. (a) Q=1.15,
(b) 2=1.11, (c) 2=1.107, (d) 2=1.104, () 2=1.101, and () Q=w=1.1.



51 BRIEF REPORTS 763

80.0 1
60.0 ]
< 40.0

Vv

20.0 4

0.0
0.000

0.004 0.006 0.008 0.010

€

0.002

FIG. 2. Averaged length of laminar regions {I/) versus
e=Q— 1.1, for the same set of parameters as in Fig. 1.

with t=wty—(4n +1)mr/2. Finally, if ¢ =1, Lemma III
provides a condition for Eq. (9) to be fulfilled for all ¢:

p< R0.0) (10)
P

with R(y,w,Q) given by (6). In brief, we have the follow-
ing.

Suppression theorem (ST). Let Q=pw,p an integer,
such that p=(4m +1—2¢/7)/(4n +1) is satisfied for
some integers m and n. Then M (t,) always has the same
sign, i.e., M(t,) <O, if and only if the following condition
in fulfilled:

(a)
0 1000 2000

1.0
0.5
0.0

-0.5

(b)
—-1.5 3 T T \
0 200 400 600

0.8 3
0.6 1
><0.4 {

0.2 1

(c)

0 100 200

0.0

Mmin < n = Mmax >

_|,__C(B0d)
Mmin 1 A('}’,(O) R(%w,ﬂ) ’ (11)
e — R0
'max 2 .

Remarks. First, observe that, for a given set of param-
eters satisfying the above theorem’s hypothesis, as the
resonance order p is increased, the allowed interval
1M min» Mmax ] fOT suppression shrinks quickly. This permits
one to explain why only a narrow range of resonances for
suppressing chaos is observed in both numerical and real
experiments [5,7,8]. Second, we can test the ST theoreti-
cally by considering the limiting case §=0 (no damping).
From Eq. (11), one has ¢=2m (m an integer), Q= o,
and =R (y,0,Q) as a sufficient and necessary condition
for eliminating (Hamiltonian) chaos. [Note that this is
the obvious result arising from a direct analysis of Eq. (2)
with 8=0, i.e., having M(¢,)=0 for all #;,.] Third, the ST
requires, for a given choice of ¢ =1,7/I, (see Remark to
Lemma II), having a selective resonance condition; e.g.,
for ¢ =3m/2, suppression in not predicted for the main
resonance (Q =w) for which ¢ =2mm,m an integer.

Computer simulations on the system described by Eq.
(1) showed very good agreement between the numerical
results and theoretical predictions, even when the pertur-
bation amplitudes and the initial conditions do not fit sen-
sibly the MHM requirements. Regular and (transient and
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FIG. 3. Displacement time series. The parameters are B=4, §=0.154, ¥ =0.095, 0=Q=1. 1, =0. (a) =0, (b) =0.05, (c)
M= Nmin=0.094 552 1, (d) 1= 71nax =0.264 097 5, (¢) n=0.45, and (f) n=0.5.
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steady) chaotic motions were mainly detected by using
time series and power spectra. Note that, in order to ob-
tain precise threshold values of 7,Q, and ¢ for complete
regularization, one has to deal with both transient and
steady chaos, in addition to periodic motions. This
means that the Lyapunov exponent (LE) is not a suitable
tool for obtaining such numerical threshold values since
it provides information concerning only steady motions.
In fact, the use of the LE to this end leads to wrong re-
sults (as, e.g., in Ref. [5], where the erroneous results are
also due to an inadequate choice of ¢ for the second and
third resonances), the correct values for 7 being lower.
Figure 1 shows a characteristic example for a choice of ¢
and 7 fitting the ST (really, 7 in its lower limit) and Q ap-
proaching one of the permitted resonant values (Q=w).
Observe the increasing duration of the “laminar” phases
and that complete regularization [i.e., when the transient
motion is also regular; see Fig. 1(f)] is only achieved at ex-
act resonance. Figure 2 shows the averaged length of the
laminar regions (/) versus e=Q—1.1, Q—1.1. The
best fit gives (I)ae 1942 in excellent agreement with
the prediction of Manneville and Pomeau ({!)ae™!) [15]
for type-Il and type-IIl intermittencies. Additional
proofs [14] have shown that, in fact, the regularization
route is type-II intermittent when  approaches (one of)
the theoretically predicted value(s).

In order to test the analytical predictions for 7, Q and
@ are chosen verifying the ST requirements and then 7 is
varied over the associated allowed interval 1, Mmax]-
Figure 3 shows a typical sequence. In general, the shor-
test transient to regular motions are found for 7 values
centered in the allowed interval 17, Nmax]- Finally, Fig.
4 shows a characteristic example testing a theoretical
value of . (Note that in Ref. [5] it is stated that * ... it is
worth mentioning that all the observed phenomenology is
independent of the initial phase shift between the two
cosines ... .”) In this case (Q=2w) the ST imposes
@=(4m —1)7/2 m an integer. Observe that the (almost)
complete regularization is already achieved for ¢ very
near 37 /2 [Fig. 4(c)] and for n=1;,.

In summary, I have shown that the application of
periodic parametric perturbations is an efficient route to
reduce or suppress steady chaotic states in nonlinear os-
cillators. All the observed (numerically and experimen-
tally) phenomenology was theoretically explained by us-
ing the MHM for the example of the DH oscillator. A
key problem subsists. The effects of such perturbations
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FIG. 4. Displacement time series. The parameters are =4,
8=0.154, y=0.088, 0=1.1, Q=20=2.2, =1, =0.0642. (a)
®=3.1415927, (b) ¢=4.0, and (c) p=4.712 389.

can be quite difficult to predict, i.e., one generally does
not know what type of nonchaotic motion to expect.
However, the selective resonance conditions of the ST
give us valuable information about its possible Fourier
expansions. Such a regular solution should be closely re-
lated to some resonant steady periodic solutions of the as-
sociated Hamiltonian system. At this stage, however,
this connection is speculative.
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